
Compiling Wien2k

on Intel based systems with Suse Linux.

Gerhard H. Fecher

Johannes Gutenberg - Universität, Mainz

Institut für anorganische Chemie und analytische Chemie

55099 Mainz, Germany

e-mail: fecher@uni-mainz.de

September 23, 2007

Abstract

A short description is given about how to compile Wien2k. The present description focuses on

Intel based systems and Suse Linux.

The tips given below may principally work also on other processors and Linux distributions,

however, they were only tested with Intel and SUSE configurations.

Be sure to read and understand the manuals.

1 Introduction

For those who do not have a fully licensed but an unsupported (free) non-commercial version of the Intel

Compiler and Intel MKL, it may not be possible to download the older versions. Newcomers starting
from scratch with Wien2k and Fortran thus may not be able to make use of the options given in the
siteconfig script for the older Versions.
The following description does not replace the Wien2k Users Guide [1]. Visit also the Frequently Asked
Questions page 1, in particular [2]. If not done already, please, read it carefully before continuing.
In case of troubles, check first the posts in the Users Forum to see if your problem was not already solved
a long time ago. Note that Linux systems are rather heterogeneous, so you may have to try your own
way for a successful installation, I hope the following will help.

Good Luck !

1.1 Disclaimer

This work is still in progress, so there will most probably be typos and errors or according to Murphy’s
law: whatever bad things may happen will happen.
The following description was tested and should run without guarantee on German SUSE 10.1 and 10.2
distributions using the Intel Fortran 10.0 compiler and MKL 9.1. The tests were performed on Intel

based systems (Notebook with Pentium M 760, 1 GByte RAM, Desktop with Pentium IV 2.8 GHz,
2 GByte RAM, Desktop with D830 3.0 GHz, 1 GByte RAM, dual-CPU Server with two Xeon 3.8 GHz,

1http://www.wien2k.at/reg user/faq

1

4 GByte RAM, and a Dual-CPU Server with two Dual-Core Xeon 5160, 8 GByte RAM). The latest tested
Wien Version is Wien2k 07.3 (for earlier compilations see in Appendix, section 7):

Processor Wien2k SUSE kernel gcc IFORT MKL Date
Pentium P IV 07.3 10.1 2.6.16.27-0.9-smp 4.1.0 10.0.026 9.0.018* 31. 08. 2007
Pentium M 760 07.3 10.1 2.6.16.21-0.13 4.1.0 10.0.026 9.1.023 31. 08. 2007
2 Xeon 5160 07.3 10.1 10.0.026 9.1.023 31. 08. 2007
2 Xeon 3.8 GHz 07.3 10.0 2.6.13-15.8-smp 4.0.2 10.0.026 9.1.023 31. 08. 2007

Note 1: * The MKL 9.1. (and all small sub versions) gave problems during installation at the old PIV
system, therefore an 9.0 version was used.
Note 2: Use cat /proc/cpuinfo and cat /proc/version to find more about youre system.

Even it is rather impossible to respect all possible combinations of 32 and em64t systems, a try is made
to give as much as possible information, notes, and remarks on differences between the various systems,
versions, and combinations from old to new. If you find a problem and solve it, please let me know, but
for sure I am not able to include all possible processors, Linux distributions, or compilers.

This short introduction cannot, however, prevent that one has to read the manuals [1, 3, 4, 5, 6, 7].

2 Short

The short installation instruction is given on the code download page:
http://www.wien2k.at/reg user/wien2k download/.
Follow the instructions there and in the scripts. Move the WIEN2k-tar.gz file(s) into a (new) directory
which will become your $WIENROOT directory, uncompress the package using (0x is the downloaded
version !):

tar -xvf WIEN2k_0x.tar

gunzip *.gz

chmod +x ./expand_lapw

./expand_lapw

This will expand all files and copies various shell-scripts. In $WIENROOT/SRC you find the postscript
version of the users guide. Proceed with reading the chapter Installation. Supposed a proper Fortran
system is installed, you can then configure and compile Wien2k using:

./siteconfig_lapw

After successful installation, every user should run:

./userconfig_lapw

3 Single processor system

Two steps are necessary for running Wien2k successfully:

• Installing the Fortran compiler and Math Kernel Libraries.

• Compiling the source code.

2

The following suggestions are supposed to work on every single Intel processor system starting from
Pentium III. They do not make benefit from the particular improvements of dual-core or quad-core CPUs
(D8xx, D9xx, Txxxx or Exxxx series) (see next section). They were, however, also successfully tested on
dual-CPU Xeon and D830 systems.
Principally the suggestions should also work with AMD processors, at least with some options changed,
but this was not tested ! (On AMD systems, you may also wish to check for optimised math-libraries for
the Blas and Lapack routines.)

3.1 Intel Fortran 10.0 and MKL 9.1

First one needs to install the compiler and the math kernel library (MKL). Both can be downloaded
from www.intel.com. Note that there are usually different downloadable versions available that are for
evaluation or for free non-commercial use. The following was only tested with the free non-commercial
versions.
One needs root access during the installation, so use either the root account or - easier - open a root shell.
Follow the instructions how to install the compiler and the library. During installation one may change
the path for the program and library. Below, the standard path is used.
/opt/intel/fc/10.0.026 or
/opt/intel/fce/10.0.026 for the fortran compiler and
/opt/intel/mkl/9.1.023 for the MKL library.
In the following it is assumed that these are the directories where to find the Intel devel-
opment tools. The suggestions given below have to be changed if a different path is used for one or the
other libraries.
Note: Be sure to download and install the correct version of the Fortran compiler depending whether you
install on a 32-bit system, on one with 64-bit extensions (em64t), or on an Itanum system. The em64t
version is found in the directory /opt/intel/fce ! Do not mix up either the 32 or em64t systems (Pentium,
Xeon), and do not muddle up those with the 64 (Itanum) systems !
After successful installation, one may tell the linker where to find the libraries. To do so, one has to edit
the file /etc/ld.so.config to include the following lines.

/opt/intel/fc/10.0.026/lib

/opt/intel/mkl/9.1.023/lib/32

for 32-bit systems (Pentium III, old Pentium IV, or Pentium M).
For em64t systems with 64-bit extensions (new Pentium or Xeon processors) it should be:

/opt/intel/fce/10.0.026/lib

/opt/intel/mkl/9.1.023/lib/em64t

After editing and saving the files, run ldconfig in /etc to take the new settings into affect.

Note 1: Use /mkl/9.1.023/lib/em64t but not /mkl/9.1.023/lib/64, the latter contains the libraries for
Itanum systems.
Note 2: You may also check if the path to other shared libraries is included in /etc/ld.so.config that may
be needed by the linker. However, this may depend on the Linux version and installation.
The environment variables needed for compiling and linking may be set by means of the scripts given in
the directories:
/opt/intel/fc/10.0.026/bin (or .../fce) for the compiler (e.g. ifortvars.sh) or
/opt/intel/mkl/9.1.023/tools/environment for the MKL (e.g.: mklvars32.sh or mklvarsem64t.sh).
Check carefully if you need the .sh or the .csh versions of the scripts, depending on the used shell and
Linux installation.

3

To make the installation more comfortable one should make some additions to the file /etc/profile.local or
to the hidden file /home/user/.bashrc in the users home directory. This can be done using the suggestions
given in the Intel script files mentioned above. The profile.local or .bashrc file should then include the
following lines:

#

PATH="/opt/intel/fc/10.0.026/bin:${PATH}"

PATH="/opt/intel/idb/10.0.026/bin:${PATH}"

export PATH

#

MANPATH="/opt/intel/idb/10.0.026/man:${MANPATH}"

MANPATH="/opt/intel/fc/10.0.026/man:${MANPATH}"

export MANPATH

#

LD_LIBRARY_PATH="/opt/intel/mkl/9.1.023/lib/32:$LD_LIBRARY_PATH"

LD_LIBRARY_PATH="/opt/intel/fc/10.0.026/lib:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH

#

INCLUDE="/opt/intel/mkl/9.1.023/include:$INCLUDE"

export INCLUDE

#

INTEL_LICENSE_FILE="/opt/intel/licenses"

export INTEL_LICENSE_FILE

#

If there is no profile.local in /etc one has to create it (at least on SUSE systems). Alternatively, one may
include the above environment variables in the (hidden) .bashrc files of all users that are supposed to
work with the compiler and libraries. This allow easier changes if one is working with multiple versions
of the Intel tools.
Note: The 32-bit MKL was used here (otherwise replace /32 by /em64t). It is also assumed that optionally
the Intel debugger is installed in /opt/intel/idb/10.0.026. On em64t system you may use the /fce and
/idbe directories for the compiler and debugger path.

Finally, open a user shell from your regular account and check if the environment variables are set correctly
for example by means of echo $LD LIBRARY PATH, and so on.

Option: In cases you are working more often with the Intel compiler - and not just to install Wien -
it may be helpful to introduce some new environment variables in the profile.local or .bashrc files that
point to the directories were the libraries are located. This saves some typing work and makes it easier to
transport the configuration from one computer to another. The additions in profile.local or .bashrc may
be:

EXPORT IFLPATH=/opt/intel/fc/10.0.026/lib

EXPORT MKLPATH=/opt/intel/mkl/9.1.023/lib/32

for the 32-bit libraries or accordingly with the correct path to the em64t libraries. Those who work
with different processors may also want to set some flag for the processor specific compiler switch like
XPROC=-xX. These switches may not work correctly with the Wien2k makefiles in their present form.
If experienced enough, one may write easily a short script that makes use of these environment variables
in order to build the OPTIONS file (see below).
If everything is ok 2, the first step is finished and one can go on to set-up Wien2k.

2For beginners, I recommend to test first with a smaller Fortran program whether everything works well, before starting
with Wien2k

4

3.2 Compiling Wien2k using siteconfig

The compilation of Wien2k is managed by siteconfig. The script siteconfig lapw changes the makefiles for
all programs, runs make and copies the executables into the Wien2k directory. The makefiles contain all
necessary information how the programs have to be compiled and linked. The script may not be suited
for the latest version of the compiler and math libraries because updates or new processors appear rather
frequently. However, it can easily be changed for particular needs.
The following are the most important options, concerning the compilation of Wien2k, that need to be
set correctly:

• Compiler to be used,

• Compiler options,

• Linker options,

• Options for the Math Kernel Libraries.

The performance of Wien2k will depend strongly on the correct settings, thus one should carefully prepare
these options.
Note: Running the script for the first time, you may see warnings during the compilation of the programs
that clean does not find files to be removed. This is clear, at the first compilation there are no object files
that can be deleted. However, all other errors should be taken serious.

3.2.1 Compiler options (FOPT):

These options tell the compiler ifort how to process the fortran files i.e.: *.f.
In principal, the only compiler option being essentially needed is -FR (same as -free). It tells the Fortran
compiler ifort that the files are in free-form format. However, there are more useful compiler switches, in
particular those who are responsible how the program is optimised and those controlling the numerical
accuracy of the compilation. Recommended options are:

-FR -w -mp1 -prec_div -pad -ip

These settings should be save.
Note 1: In cases of doubt check the Intel Fortran manuals for particular switches and their use, there
are plenty lots of them.
Note 2: For a particular processor one may add the switch -xProcessor. The possible switches are -xB,
-xK, -xN, -xP, -xT, or -xW depending on the target processor (see also section 6.1 and the compiler
manuals). These switches should be used together with the switch -O3 for a higher optimisation level
(-O2 is used as default and needs not to be given). The program compiled with a -xX switch may not
run on computer with a processor being not supported by that switch. It may also be necessary to link
libsvml if these compiler switches are used.
Note 3: The switches -mp1, -prec div, -pad are used to maintain floating point precession in the calcula-
tions. The switch -w suppresses that warnings are printed during compilation.
Note 4: The switch -ip performs single-file inter procedural optimisation, that is optimisation between
subroutines located in the same .f file.
Note 5: Presently, it seems that only the subroutine SRC lapw1/hamilt.f makes use of the macro IN-
TEL VML, therefore the switch -DINTEL VML is not given in the options, at the present stage.
Note 6: Some switches being suggested in the original (or mostly in some older versions) siteconfig lapw
script are not used here for different reasons: -pc80 is the default and thus not needed. -Vaxlib is from
very old versions of the Intel compiler and not longer in use.
The compiler options with optimisation for a Pentium M processor may look like:

5

-FR -w -mp1 -prec_div -pad -ip -DINTEL_VML -O3 -xB

Note 1: The use of these options may need some additional libraries (see below).
Note 2: Replace -xB by -xP if the target processor is for example a PIV with em64t extensions or a Xeon.

3.2.2 Linker options (LDFLAGS):

These options are passed from the compiler ifort to the Linux linker ld in order to make the executables
from the object files (*.o). They also tell the linker which non-standard libraries should be used.
For dynamic linking of the libraries use:

-L/opt/intel/mkl/9.1.023/lib/32 -lguide -lpthread

Note: These settings should be save. Depending on the compiler switches, in particular for optimisation,
one may need to give more libraries. (See also the following notes.)
The switch -no-ipo may be necessary on some systems. It prevents some Linker errors (see Section 3.2.3).
For static linking of the Intel provided libraries one may use:

-L/opt/intel/fc/10.0.026/lib -i-static -lguide_stats -lsvml -lpthread

Note 1: -L/PATH tells the linker ld where to search for the library files. On some systems, ld searches
in -L/PATH first for shared libraries libxyz.so and then for static libraries libxyz.a. If it finds the shared
library then it will perform dynamic linking even so a static library is present (see also note below).
Note 2: One probably needs to give -L/opt/intel/fc/10.0.026/lib because there one finds the libguide stats,
and it will not be found if only giving the path to MKL, like used in the dynamic example.
Note 3: The switch -i-static tells ifort that only the Intel libraries should be linked statically.
Note 4: The switch -lsvml is used together with processor specific optimisation like -O3 -xB or -O3 -xP.
Note 5: libguide is found in both the ifort and the MKL library path. It seems that at least the static
versions are identical at present. This may change with other versions of the compiler and MKL.
Note 6: libpthread is not an Intel provided library and should be found in the standard linker path.
Note 7: The switch -static-libcxa being suggested in older siteconfig lapw scripts is not used here, as it
seems that libcxa is not used in all parts of the program. This switch is used to link the C++ compatibility
libraries statically. The alternative switch is -dynamic-libcxa (see also Intel manuals). WARNING:
The switch -static-libcxa does not work with gcc on a 64-bit SUSE 10.0 with multiprocessor kernel !
Note 8: For static linking of a particular library one may also give the static library file with its full
path explicitly like for example MKLPATH/libguide.a instead of -lguide. On the other hand, the type
of linking can be changed by using the switches -Bdynamic for dynamic linking and -Bstatic for sta-
tic linking. These switches are always acting on the library given after the switches. That means:
-L/opt/intel/mkl/9.1.023/lib -Bstatic -lguide -Bdynamic -lpthread links libguide statically and libpthread
dynamically.
Note 9: The behaviour of ld depends also on the settings in /etc/ld.so.config as regards shared libraries.
(ldconfig -p reports which shared libraries are known in the linker cache.)
Note 10: Be sure whether your compiler and libraries are in the ../fc or the ../fce directories depending
on the version of the compiler 32 or em64t, respectively. Otherwise you will receive some messages on
incompatible libraries and missing routines.

3.2.3 Linker problem with ifort 9.x and SUSE 10.1:

There is a problem with this combination as well as with other distributions, the compiler may report the
following error:

IPO Link error: file not found "("

6

In case that this appears, you may like to add one of the switches -no-ipo or -O0 to the linker flag (not to
the compiler flags !) such that it looks like, for example:

-no-ipo -L/opt/intel/fc/10.0.026/lib -lguide -lpthread

It seems that some parameter is incorrectly passed to the linker, or interpreted wrong by it. Usually the
interprocedural optimization are not used for the Wien2k compilation. The error message does not longer
appear in ifort 10.0 (SUSE 10.x).
In case you like to do experiments with the -ipo flag during compilation, you may need to create in each
directory the two empty files: (and AS NEEDED, e.g. by using:

echo NULL > \(

echo NULL > AS_NEEDED

It helps, but I do not like to know why !

3.2.4 BLAS-LAPACK options (R LIBS):

These are special options for the linker concerning the MKL or other blas-lapack libraries. These libraries
are not needed in all of the Wien2k programs but only in some particular ones.
In case of a 32-bit system, the switches:

-L/opt/intel/mkl/9.1.023/lib/32 -lmkl_lapack -lmkl_ia32 -lguide -lpthread

should be save.

Note 1: The switch -no-ipo may be necessary on some systems. It prevents some Linker errors (see Section
3.2.3.
Note 2: For Pentium processors with 64-Bit extensions one may use -L/opt/intel/mkl/9.1.023/lib/em64t
and -lmkl em64t.
Note 3: For some of the Suse 9.3 (or newer) installations, there was no need to give the libpthread library
explicitly, thus one may drop the -lpthread switch, it is probably somewhere in the linker path. On 64-bit
SUSE 10.0 systems, the 64-bit version of the library will be chosen automatically in the case of dynamic
linking.
Note 4: The reason to give some libraries twice (in LDFLAGS and R LIBS) is the behaviour of the Linux

linker ld that needs to have the libraries given in a particular series if using the -lxyz form. In that case it
searches -L/PATH only once. For example libmkl lapack needs libmkl ia32 (or libmkl em64t) and libguide,
so libmkl ia32 and libguide have to be given after libmkl lapack - like in the example given above - otherwise
the linker complains about missing routines. On the other hand, the libmkl lapack is only needed in few
makefiles, but libguide or libpthread may be needed in other subroutines without libmkl lapack. Therefore
some libraries are needed in LDFLAGS and as R LIBS comes in the make files after LDFLAGS, one may
need to give some libraries another time.
At the command line, this type of searching behaviour of ld may be overcome by using -(libraries -)
causing that the -L/PATH is searched multiply. libraries may be explicit files or -l options. This does not
work, however, across different flags like used for example in the makefiles of Wien (LDFLAGS, R LIBS).
It should be noted that ifort passes command line options to ld making use of the switch -Bl.
The above given options link the MKL libraries, at least some parts, statically even without use of the
-static switch! The reason is that the static and dynamic versions of the MKL libraries have different
names.
For dynamic linking of the MKL one needs to link the shared libraries libzyx.so instead of libxyz.a, these
have slightly different names, such that the R LIBS options may look like:

-L/opt/intel/mkl/9.1.023/lib/32 -lmkl_lapack64 -lmkl -lmkl_p4 -lvml

7

Note: If any errors occur during the link process complaining about missing subroutines, one can easily
check which of the static library archives (libxyz.a) contains the missing subroutine. This is usually very
helpful even so one may have to check a lot of files if the missing routine is in one of the general or Gnu

libraries. If there is a shared library (libxyz.so) with the same name then it should usually contain the
same routines like the archive, and thus may be added to the list of libraries to be linked dynamically.
Moreover, finding the correct library may prevent to write patches just because a subroutine is moved
- for whatever reason - from one to another library. This was for example the case some time ago with
libpthread were the missing subroutine (pthread atfork) was moved to libpthread nonshared, at least for
SUSE systems (see in /usr/lib). Similar, a complain about a missing pthread atfork may appear if you
use the em64t version of the compiler but give the 32-bit libraries, however, for different reason.

3.2.5 Making Wien2k

Follow the installation instructions given on the Wien2k code download page 3.

a) Running site config for the first time
If installing Wien2k the first time, one has to set correctly all options in site config as suggested above.
Among others, site config will create a file OPTIONS where all the information about the compiler is
stored. This file is very helpful for later changes, see next step.

b) Changing options and recompiling
Before using the script siteconfig (siteconfig lapw) repeatedly, one may change the file OPTIONS in the
Wien2k directory. This file contains the compiler and library specific definitions. For a non-parallel version
like discussed here, it should contain for example the lines (replace -xX by the correct processor
specific option !):

current:FOPT:-FR -w -mp1 -prec_div -pad -ip -DINTEL_VML -O3 -xX

current:LDFLAGS:-L/opt/intel/fc/10.0.026/lib -i-static -lguide_stats -lsvml -lpthread

current:R_LIBS:-L/opt/intel/mkl/9.1.023/lib/32 -lmkl_lapack -lmkl_ia32 -lguide -lpthread

Note 1: This may link different libraries in different parts of Wien2k, depending whether the accompanied
makefile uses R LIBS or not !
Note 2: Use the correct path on em64t systems !

3.2.6 Static versus dynamic linking

Actually, full static linking using -static may not work for ”large” cases (see also Sections 5, 5.1, and 6.3
on errors). On the other hand, the gain of performance by static linking is in many cases not that
tremendous. The drawback of (full) dynamic linking is, that the executables can not be transferred easily
from one to another computer. If setting up on more than two computers, it becomes boring that one
needs always to install the development tools such that the dynamic libraries are found correctly. A way
to overcome this at least partially is to link all Intel provided libraries statically and only the Linux

libraries dynamically. If the Linux installations on the different computers are identical (check carefully
if using different processors) then the executables should work on those computers, too. In that case
one needs only to transfer the executables and scripts (do not forget the directories for the templates,
manual, etc.) of Wien2k from one to another computer instead of going always through a complete install
procedure. The Appendix gives some ideas which linker switches may be used and how to find out which
shared libraries are needed for different models.

3http://www.wien2k.at/reg user

8

4 Dual-core or dual processor systems.

The set-up for the siteconfig lapw script are principally the same as described above for a single processor
system. The only differences may be the libraries needed to be linked and the optional compiler switch
xX = xP or xT for processor specific optimisation (see also: Appendix). A simple case for a system with
2 dual-core XEON processors with em64t extensions may look like:

FOPT: -FR -w -mp1 -prec_div -pad -ip -O3 -xT

LDFLAGS: -L/opt/intel/fce/10.0.026/lib -lguide -lpthread

R_LIBS: -L/opt/intel/mkl/9.1.023/lib/em64t -lmkl_lapack -lmkl_em64t

For other cases follow the instructions given above for the single processor guide (see Appendix for more).

The number of processors installed in the system is reported by:

cat /proc/cpuinfo

The main difference in setting up ”dual”-systems is to influence the behaviour of the MKL 4 being already
prepared for parallel execution (see: [7]).
To force the library to serial mode, the environment variable MKL SERIAL should be set to YES.
MKL SERIAL is not set by default. It works regardless of the OMP NUM THREADS value.
Furthermore, the parallel execution of the MKL routines is controlled by the environment variable
OMP NUM THREADS 5, that is usually not set.
The number of threads should be set in the shell from which one starts Wien2k (or for permanent use
in profile.local 6) to the desired value N=1,2,..,Nmax where Nmax is the maximum number of processors
(cores) in the system 7 using:

export OMP_NUM_THREADS=N

Note 1: After changing the values for OMP NUM THREADS one may have to kill and restart w2web if
it was already running.
Note 2: For ”dual”-systems where more than one job - and not just a single Wien calculation - is planned
to be executed at once, it is suggested to start by setting OMP NUM THREADS=1 and then run some
benchmark tests with increasing numbers to find the best performance that fits to particular needs.

The consequence of the thread-setting is demonstrated in the following table giving the execution times
for different number of jobs and threads (see Appendix for CPU and Wall times).

Table 1: Execution times [min:sec] for test case on a dual Xeon machine.

threads 1 2 4

1× 1 job 2:36 1:57 2:05

1× 2 jobs 3:11 3:25 3:22
2× 1 job 5:12 3:54

1× 4 jobs 6:27 6:26 6:38
2× 2 jobs 6:22 6:50
4× 1 job 10:24 7:48

4The following was only tested with SUSE 10.1 (kernel).
5The default of OMP NUM THREADS is the number of processors installed while generating the executable [5]. If not

set, the default for the MKL is one.
6Read carefully all files of the MKL and Fortran documentation before setting other values than 1.
7Note: The execution may be slowed down if less processors are available then specified !

9

The calculations in Tab.1 were performed using a version compiled with full processor specific optimisation
and all Intel provided libraries were linked statically. The serial and parallel jobs were started from a
script file with the execution time taken from a date command at beginning and end of the script. No
other background jobs were running.
From the results in Tab.1, one expects that OMP NUM THREADS=2 is suited if just one single job is
executed. This changes for two jobs in parallel where OMP NUM THREADS=1 is obviously the better
choice. In the particular example, the overall time for running two lapw1 calculations with 1 thread is
191 seconds if executing them in parallel but 233 seconds if running them consecutively with 2 threads.
Note: One should keep in mind, however, that these findings are for a very special example and set-up. The
general behaviour, if different programs run at once on a different system, may lead to other conclusions.
So check for your needs.

Another option for the compiler is to make use of the auto-paralleliser by means of the compiler switch
-parallel (not the macro -Dparallel !). However, no particular enhancement for lapw1 was found on a
dual-Xeon machine. This may be different for other parts of Wien but was not yet tested. In other cases
a slowing down of programs was observed if using -parallel in particular together with the mkl.

5 Runtime errors

This section is to prevent questions like ”Wien stops with an error! Why?” or ”Wien does not run, please
give advice.”. Such questions can not be answered ! Some of the tips given here are not just Wien2k
specific, but may be helpful also for other things programmed in Fortran.
If any error occurs, first check all input files and switches to run the Wien2k scripts (see [1]), second
check the installation (see this file). If everything is really well then try to figure out what else may have
caused the error. The following may give some ideas about compiler and library related errors.
It may appear that one experiences some run time errors like SIGSEGV message 8. In order to heal such
errors, one has to know in detail where and why such errors occurs.
An oftenly reported error is: SIGSEGV (segmentation fault) 9. A common answer is to increase the
stack size, however, this may neither have the wanted effect (see sections 5.1 and 6.3) nor heal the error
SIGSEGV (program stack overflow). Actually, I never experienced that the stack size setting was the
cause for a SIGSEGV (segmentation fault) error but this may be different on other systems. On the other
hand, it may appear that a segmentation fault is the result of a badly handled stack error. This example
shows that one has to take care what the run-time error really tells.
If a SIGSEGV (segmentation fault) error appears, it is usually not given in what particular part of the
program. Usually one receives an error like: Error in lapw123 and something more with show STDOUT,
so what to do ?. To find out where the error appears one may recompile the subroutine under question with
the compiler option -traceback. One may either change the compile options in siteconfig and recompile
either all programs or only the one under question. Experienced users will change the makefile of the
affected subprogram by hand and start make. Traceback will hopefully report where the error appeared,
but note that the program will probably become slower. If the optimisation level is not set to -O0 then
one may additionally use the switch -fp to allow for a trace back with optimisations switched on (see the
compiler manuals for details).
In general, segmentation faults occur very often if an array element is accessed in the wrong way. Fortran
arrays have as standard the first element a(1) and not a(0) if the dimension a(DIM) is used. To use
a(0) one needs the dimension a(0:DIM). Trying to access a(0), a(-1), or a(i) with i>DIM might cause
segmentation faults. Note that this may also be produced by a simple input and not only a program error.

8This is not a particular problem of Wien2k, indeed. The Wien2k programmers do a hard job to keep it free of bugs.
9On German systems you may receive instead: Speicherschutzverletzung. One may set LANG to en US if preferring the

English version of the error messages.

10

The switch -CB (same as -check bounds) performs run-time checks on whether array subscripts are within
the declared dimensions and thus it may be very helpful to find such errors. In some cases, an undetected
stack error may cause that an index of an array element is transferred in a wrong way to a subroutine
and thus causing the segmentation fault. Similarly, some numerical over- or underflow can cause wrong
indexing of arrays. This may sound complicated, but now you see, why it is not easy to trust the error
messages, and finding errors correctly might be hard work.
Further, the option -g may be used that produces code for debugging. See the Intel debugger manual
for more information about working with the debugger.
Note 1: All debugging switches like -traceback, -CB,, -g, or others may slow down the program and will
increase its size. Thus, it is a good idea to use them only for the effected subroutine and finally they
should not be used for the version compiled for every days work.
Note 2: Errors seem to vanish sometimes if using a lower optimisation level. Indeed, this may be a compiler
problem leading to some type of ”over-optimisation” in particular if rearranging floating point operations.
However, there is most probably also some dirty code 10. In such cases one may check if there are for
example any not initialised, undeclared variables, or other quick and dirty solutions by switching on the
warnings during compile time. As an example: comment all IMPLICIT statements and use IMPLICIT
NONE instead to find if there is a real variable named c but not declared as real.
Another appearance of segmentation faults seems to be related to some libraries not belonging to the Intel

compiler or MKL, so check which version of the libraries is linked to the compilation. For dynamically
linked libraries, this can be checked by means of ldd. Go to the directory containing the program that
caused the error, e.g.: for lapw1 go to /SRC lapw1. Call ldd lapw1, this will show you which libraries are
linked dynamically to lapw1. One may also use ld -M lapw1 to find out which routines and symbols are
used.
For more, see the Run-Time Error Messages section of [4].
In case of troubles, please check and report always which ”small” x0.0.yyy version was used for the com-
pilation. Most probably some libraries are changed between such small versions, and things downloaded
tomorrow are different from those yesterday.

5.1 Limitations that cause errors.

The Intel Fortran compiler and Linux have obviously some limitations (see also section 6.3) that also
cause SIGSEGV or similar nasty errors, if exceeding them.
1) The largest array size is 231

− 1 that is 2 GByte even on some em64t systems 11. Larger arrays will
cause segmentation faults or similar errors. Unfortunately, these errors lead to serious crashes but their
cause is actually not found by any of the debugging features provided by Linux or the compiler. In some
cases the crash may be that bad that one has to restart the computer (check for performance loss and
other strange things).
2) Full static linking with -static causes crashes most probably if the necessary stack-size exceeds 2 GByte.
This seems to be partially a 32-bit Linux problem with libpthread, at least on many systems (see also
section 6.3). Again, this limitation leads to serious crashes and its cause is not found by any of the
debugging features.
It is interesting to note, that the Windows version of the Intel Fortran compiler, coming with its own
Linker, is able to handle those two problems correctly. (This just means that the linker has a better
performance in detecting the stack size, but not automatically that the stack handling of Windows is
better.)

10This is not a problem of the Wien programmers, I experienced from my own programs that dirty code is self-reproducing!
11At present (whenever present is), one may have to use a ”real 64-bit” processor like Itanum or non-Intel systems to

overcome that limitation.

11

6 Appendix

6.1 Processor specific switches -xX

The following processor specific optimisation switches (-xProcessor) are available (not Itanum) in ifort
10.0:

• -xB : Pentium M,

• -xK : Pentium III and Athlon XP,

• -xN : Pentium IV and compatible, with new optimisations,

• -xP : Pentium IV and Xeon, with SSE-3 instructions and em64t,

• -xT : Intel Dual or Quad Core Pentium and XEON,

• -xW : Pentium IV, Xeon, (em64t), Athlon 64, and Opteron.

Note 1: These are suggestions made in the Intel manuals (Compiler Options [3] and Quick-Reference
Guide), here only -xT, -xB, -xW were tested with Intel processors. Not all switches are valid on em64t
systems. Alternatively, one may use -axProcessor that always produces additionally generic iA32 code for
compatibility.
Note 2: Alternatively, one may also use combinations of switches like -axXY or -xXY.

If needed, check the old compiler manuals (ifort 8.x, 9.x, or ifc 7.x) for the processor specific optimisation
switches.

6.2 Dynamically linked libraries in lapw1

The following results are from SUSE 9.3 on a Pentium M and SUSE 10.0 on a dual Xeon. They may differ
if using different systems. The examples may serve to guide how to find which dynamic libraries are used
by the program. Some benchmark results are given for comparison.

a) The options for dynamic linking (not MKL) and without particular optimisations

-FR -w -mp1 -prec_div -pad -ip

-L/opt/intel/fc/lib -lguide -lpthread

-L/opt/intel/mkl/lib/32 -lmkl_lapack -lmkl_ia32

have the result that the following libraries are linked dynamically:

linux-gate.so.1 => (0xffffe000)

libguide.so => /opt/intel/fc/lib/libguide.so (0x40019000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x40060000)

libimf.so => /opt/intel/fc/lib/libimf.so (0x40072000)

libm.so.6 => /lib/tls/libm.so.6 (0x4024e000)

libc.so.6 => /lib/tls/libc.so.6 (0x40271000)

ibdl.so.2 => /lib/libdl.so.2 (0x4038a000)

/lib/ld-linux.so.2 (0x40000000)

The maximum CPU time was 457.24s for the test case on a Pentium M 760.

The similar options for a processor with em64t extension

12

-FR -w -mp1 -prec_div -pad -ip

-L/opt/intel/fce/lib -lguide -lpthread

-L/opt/intel/mkl/lib/em64t -lmkl_lapack -lmkl_em64t

have the result that the following libraries are linked dynamically:

to be done

The maximum CPU time was 184.43s for the test case on a dual Xeon machine with the number of threads
set to OMP NUM THREADS = 2.

b) The options for full dynamic linking without particular optimisations (only default: O2) on a 32-bit
system

FOPT: -FR -w -mp1 -prec_div -pad -ip

LDFLAGS: -L/opt/intel/fc/lib -lguide -lpthread

R_LIBS: -L/opt/intel/mkl/lib/32 -lmkl_lapack64 -lmkl -lmkl_p4 -lvml

have the result that the following libraries are linked dynamically:

linux-gate.so.1 => (0xffffe000)

libguide.so => /opt/intel/fc/lib/libguide.so (0x40019000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x40060000)

libmkl_lapack64.so => /opt/intel/mkl/lib/32/libmkl_lapack64.so (0x40072000)

libmkl.so => /opt/intel/mkl/lib/32/libmkl.so (0x40341000)

libmkl_p4.so => /opt/intel/mkl/lib/32/libmkl_p4.so (0x403a1000)

libvml.so => /opt/intel/mkl/lib/32/libvml.so (0x4082a000)

libimf.so => /opt/intel/fc/lib/libimf.so (0x40864000)

libm.so.6 => /lib/tls/libm.so.6 (0x40a40000)

libc.so.6 => /lib/tls/libc.so.6 (0x40a63000)

libdl.so.2 => /lib/libdl.so.2 (0x40b7c000)

/lib/ld-linux.so.2 (0x40000000)

The maximum CPU time was 457.04s for the test case on a Pentium M 760.

c) The options for partially static linking with full optimisation for a Pentium M processor

-FR -w -mp1 -prec_div -pad -ip -DINTEL_VML -O3 -xB

-L/opt/intel/fc/lib -i-static -lguide -lguide_stats -lsvml -lpthread

-L/opt/intel/mkl/lib/32 -lmkl_lapack -lmkl_ia32

have the result that the following libraries are linked dynamically:

linux-gate.so.1 => (0xffffe000)

libguide.so => /opt/intel/fc/lib/libguide.so (0x40019000)

libguide_stats.so => /opt/intel/fc/lib/libguide_stats.so (0x40048000)

libsvml.so => /opt/intel/fc/lib/libsvml.so (0x40087000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x400f3000)

libm.so.6 => /lib/tls/libm.so.6 (0x40105000)

libc.so.6 => /lib/tls/libc.so.6 (0x40128000)

libdl.so.2 => /lib/libdl.so.2 (0x40242000)

/lib/ld-linux.so.2 (0x40000000)

13

The additional libraries are libguide stats and libsvml whereas the compatibility library libimf is now
linked statically.
The maximum CPU time was 445.6s for the test case on a Pentium M 760.

d) The options for static linking of all Intel provided libraries with full optimisation for a Pentium M
processor

-FR -w -mp1 -prec_div -pad -ip -DINTEL_VML -O3 -xB

-L/opt/intel/fc/lib -i-static -Bstatic -lguide -lguide_stats -lsvml -Bdynamic -lpthread

-L/opt/intel/mkl/lib/32 -Bstatic -lmkl_lapack -lmkl_ia32 -lguide -Bdynamic -lpthread

have the result that the following libraries are linked dynamically:

linux-gate.so.1 => (0xffffe000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x40031000)

libm.so.6 => /lib/tls/libm.so.6 (0x40043000)

libc.so.6 => /lib/tls/libc.so.6 (0x40066000)

/lib/ld-linux.so.2 (0x40000000)

The maximum CPU time was 445.35s for the test case on a Pentium M 760.

The similar options for a processor with em64t extension

-FR -w -mp1 -prec_div -pad -ip -DINTEL_VML -O3 -xP

-L/opt/intel/fce/lib -i-static -Bstatic -lguide -lguide_stats -lsvml -Bdynamic -lpthread

-L/opt/intel/mkl/lib/em64t -Bstatic -lmkl_lapack -lmkl_em64t -lguide -Bdynamic -lpthread

have the result that the following libraries are linked dynamically:

to be done

The Maximum CPU times were 157s, 173s, or 281s for the test case on a dual Xeon machine with
OMP NUM THREADS= 1, 2, or 4, respectively. The accompanied maximum wall clock times were 156s,
117s, and 125s executing a single job from the command line of a ssh shell (This times may differ if the
test case is started from w2web). Starting two test case jobs in parallel (using a shell script), the maximum
CPU times were 192s, 321s, and 303s with wall clock times of 191s, 205s, and 202s for each job, again for
OMP NUM THREADS= 1, 2, or 4.

e) Finally, the use of the linker switch -static should produce executables without any dynamically linked
libraries (message from ldd: not a dynamic executable).
Warning: It seems, however, that statically linked executables for Wien2k, and most probably also for
other large programs, lead presently for certain configurations still to segmentation faults, for not well
known reasons. It seems that small cases (few atoms) work, whereas ”larger” cases cause segmentation
faults (or other crashes) in lapw1(c) or lapw2(c). In particular the test case does not work with -static.
The problem seems to be related with the Linux library libpthread, as the static linking of all Intel

provided libraries does not cause problems, at least with the test case (see above). The failure is most
probably due to a Linux 2 GB limitation [6], see next section.

14

6.3 The Intel homepage tells:

The Intel Fortran Compilers 8.0 or higher allocate more temporaries on the stack than previous Intel

Fortran compilers. Temporaries include automatic arrays and array sub-sections corresponding to actual
arguments. If the program is not afforded adequate stack space at runtime relative to the total size of the
temporaries, the program will terminate with a segmentation fault on Linux. On Linux, the stack space
can be increased using (e.g. ulimit -s unlimited) for bash shell or (e.g. limit stacksize unlimited) for csh
shell.
For Intel Fortran Compilers 10.0: The heap-arrays compiler option directs the compiler to put the
automatic arrays and arrays created for temporary computations on the heap instead of the stack.
Note: The size of ”unlimited” varies by Linux configuration, so you may need to specify a larger, specific
number to ulimit (for example, 999999999). On Linux also note that many 32bit Linux distributions ship
with a pthread static library (libpthread.a) that at runtime will fix the stacksize to 2093056 bytes regardless
of the ulimit setting. To avoid this problem do not link with the -static option or the -fast option. Instead
of -fast, use options: -ipo -O3 -no-prec-div -xP. This only affects the 32bit Linux distributions and does
not apply to the 64bit Linux distributions.

7 Earlier tested configurations.

:
The above given description was tested during the last years and should run without guarantee on German
SUSE 9.2, 9.2 (US), 9.3, 10.0, 10.1, and 10.2 distributions using the Intel Fortran 8.0 to 10.0 compiler
together with MKL 8.0 to 9.1. The tests were performed on several Intel based systems (To name a
few: Notebook with Pentium M 760, 1 GByte RAM, Desktop with Pentium IV 2.8 GHz, 2 GByte RAM,
Desktop with D830 3.0 GHz, 1 GByte RAM, dual-CPU Server with two Xeon 3.8 GHz, 4 GByte RAM,
and a Dual-CPU Server with two Dual-Core Xeon 5160, 8 GByte RAM). The tested Wien Versions were
Wien2k 05, Wien2k 06, and Wien2k 07. Some of the more recent tests are given in the following table:

Processor Wien2k SUSE IFORT MKL Date
1 2 Xeon 3.8 GHz 05.6 10.0 9.0.021 8.0.19
2 Pentium M 760 06.2 9.3 9.0.021 8.0.19
3 Pentium D 830 06.2 10.0 9.0.031 8.0.2.004
4 Pentium M 760 06.4 10.1 9.1.041 8.1.014 4. Jan. 2007
5 Pentium D 830 07.1 10.1 9.1.041 8.1.014 27. Jan. 2007
6 Pentium M 760 07.1 10.1 9.1.041 8.1.014 28. Jan. 2007
7 Pentium M 760 07.2 10.1 10.0.023 9.1.018 11. Jun. 2007
8 2 Xeon 3.8 GHz 07.2 10.0 10.0.023 9.1.018 12. Jun. 2007
9 2 Xeon 5160 07.2 10.2 10.0.023 9.1.018 12. Jun. 2007
10 Pentium P IV 07.3 10.1 10.0.026 9.0.018* 31. Aug. 2007
11 Pentium M 760 07.3 10.1 10.0.026 9.1.023 31. Aug. 2007
12 2 Xeon 5160 07.3 10.1 10.0.026 9.1.023 31. Aug. 2007
13 2 Xeon 3.8 GHz 07.3 10.0 10.0.026 9.1.023 31. Aug. 2007

* The MKL 9.1.0xx (and all small .0xx sub versions) gave problems during installation at the old PIV
system, therefore an 9.0 version was used.

15

8 Acknowledgement

I like to thank all those who gave helpful advices in the Wien users forum and in particular L. D. Marks.
Special thanks go to U. Stumm who tells me which character to type when I receive for the 111th time
not what I expect (I should know meanwhile that it is ldd and not ld, telling me which libraries are linked
dynamically).
Finally, I admire the patience of Peter after so much junk mail.

References

[1] WIEN2k-Usersguide (pdf); http://www.wien2k.at/reg user/textbooks/usersguide.pdf

[2] Compiling WIEN2k under Linux using ifc (pgf90) and optimized libraries;
http://www.wien2k.at/reg user/faq/OptimizingWIEN2k.htm

[3] Intel Fortran Compiler Options.

[4] Intel Fortran Compiler for Linux Building Applications.

[5] Intel Fortran Compiler Optimizing Applications.

[6] Intel Fortran Compiler 10.0 for Linux Release Notes.

[7] Intel Math Kernel Library 9.1 Reference Manual.

16

